On countably saturated linear orders

Ziemowit Kostana

University of Warsaw, Poland and Czech Academy of Sciences, Czech Republic

Winter School in Abstract Analysis, Hejnice, 29.01.2019

General definitions

- A linear order is compact, if it's compact in the order topology. This means, it is Dedekind complete, and has both endpoints.
- A linear order is linearly ordered continuum, if it is compact and connected in the order topology. This means, it is compact and dense.
- I = [-1, 1].

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

We'll say that a linear order (L, \leq) is countably saturated, if for any countable linear orders a, b, and increasing functions $i : a \to b$, $f : a \to L$, there exists $\tilde{f} : b \to L$, such that $\tilde{f} \circ i = f$.

(日)

Definition

We'll say that a linear order (L, \leq) is countably saturated, if for any countable linear orders a, b, and increasing functions $i : a \to b$, $f : a \to L$, there exists $\tilde{f} : b \to L$, such that $\tilde{f} \circ i = f$.

There exists an equivalent definition.

Lemma

Linear order is countably saturated if and only if

- it is dense, without endpoints,
- no countable increasing sequence has supremum,
- no countable decreasing sequence has infimum,
- there are no (ω, ω) -gaps: for any two sequences $\{x_n\}_{n < \omega}$, $\{y_n\}_{n < \omega}$ such that $\forall n < \omega \ x_n < x_{n+1} < y_{n+1} < y_n$, there exists z s.t. $\forall n < \omega \ x_n < z < y_n$.

Proposition

Any countably saturated linear order contains an isomorphic copy of the real line.

Proof.

Let (L, \leq) be a countably saturated linear order. It is dense, so there exists an injection $i : \mathbb{Q} \hookrightarrow L$. For any real number r, we want to define i(r). Notice that sets $i[\{q \in \mathbb{Q} : q > r\}] > i[\{q \in \mathbb{Q} : q < r\}]$ are countable. Therefore, there exists $l \in L$ such that

$$i[\{q \in \mathbb{Q}: \, q > r\}] > l > i[\{q \in \mathbb{Q}: \, q < r\}].$$

We define i(r) = l.

Theorem (Hausdorff)

Assume (L, \leq_L) is countably saturated, and (X, \leq_X) doesn't contain a copy of ω_1 or ω_1^* . Then exists an embedding $i : X \hookrightarrow L$.

イロト イポト イヨト イヨト

Examples

Definition

A countably saturated linear order L is prime, if it embedds into any other countably saturated linear order.

イロト イポト イヨト イヨ

Examples

Definition

A countably saturated linear order L is prime, if it embedds into any other countably saturated linear order.

Example (Sierpiński)

Let $Q = \{x \in \{0, 1\}^{\omega_1} | \exists_{\alpha < \omega_1} x(\alpha) = 1, \forall \beta > \alpha x(\beta) = 0\}$, with lexicographic order. This order is prime countably saturated.

(日)

Examples

Definition

$$\mathbb{L}^{\omega_1} = \{ x \in I^{\omega_1} | | \{ \alpha < \omega_1 : x(\alpha) \neq 0 \} | \le \omega \},\$$

with lexicographic order. If D is compact linear order, and $d_0 \in D$ is neither least, nor greatest element of D, then we define

$$\mathbb{L}_{(D,d_0)}^{\omega_1} = \{ x \in D^{\omega_1} | | \{ \alpha < \omega_1 : x(\alpha) \neq d_0 \} | \le \omega \}.$$

Image: A image: A

Examples

Theorem

 \mathbb{L}^{ω_1} and $\mathbb{L}^{\omega_1}_{(D,d_0)}$ are countably saturated.

Theorem

 \mathbb{L}^{ω_1} is prime countably saturated. Moreover, if *D* is separable, compact, and $d_0 \in D$ is neither the least, nor the greatest element, $\mathbb{L}^{\omega_1}_{(D,d_0)}$ is prime.

イロト イポト イヨト イヨト

Classification

Theorem (folklore)

Under CH, all countably saturated linear orders of cardinality **c** *are isomorphic.*

イロト イポト イヨト イヨト

Classification

Theorem (folklore)

Under CH, all countably saturated linear orders of cardinality **c** *are isomorphic.*

In fact, the category of countable linear orders with embeddings, has unique ω_1 -Fraïssé limit.

< □ > < //2 >

Classification

Theorem (foklore)

Without CH, no.

ヘロト ヘロト ヘビト

< ≣⇒

Classification

Proof.

$$\mathbb{L}^{\omega_1} = \{ x \in I^{\omega_1} | | \{ \alpha < \omega_1 : x(\alpha) \neq 0 \} | \le \omega \},\$$

and

$$\{x\in I^{\omega_2}|\,|\{\alpha<\omega_2:\,x(\alpha)\neq 0\}|\leq\omega\},$$

are both countably saturated. But the second contains a copy of ω_2 , while the first doesn't.

イロト イポト イヨト

-≣->

But what if we want same better examples?

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Example

In the Cohen model there exists two non-isomorphic countably saturated linear orders of cardinality c, none of which contains copy of ω_2 or ω_2^* .

< □ > < //2 >

Outline of the proof:

Let *M* be a model of *CH*, M[G] be extension by $Fn_{<\omega}(\omega_2)$.

- First example will be L^{ω1} (in M[G]). We show, that it doesn't contain copy of any linear order of cardinality ω₂, which was in M.
- For second example, we take 2^{ω1}, and inductively define an increasing sequence of linear orders {R_α}_{α≤ω1}, such that R₀ = 2^{ω1}, and R_{ω1} is countably saturated.

$$(2^{\omega_1})^M \subset 2^{\omega_1} \subseteq R_{\omega_1},$$

so these two cannot be isomorphic.

伺下 (日下)(日

Linear dimension

We'll use notion of dimension for better classification of linear orders.

Definition (V. Novák, 1963)

Let L and X be linear orders. We define dimension of X with respect to L as:

$$\operatorname{L-dim} X = \min\{\alpha \in ON \mid X \hookrightarrow L^{\alpha}\}.$$

< □ > < //2 >

3 ×

Linear dimension

Let us write down some easy observations.

Proposition

For any linear orders L, L_1, L_2, X , the following holds.

- If $X_1 \hookrightarrow X_2$, then L-dim $X_1 \leq$ L-dim X_2 .
- If $L_1 \hookrightarrow L_2$, then L_1 -dim $X \ge L_2$ -dim X.
- If $L_1 \hookrightarrow L_2$ and $L_2 \hookrightarrow L_1$, then for every X, L_1 -dim $X = L_2$ -dim X.

イロト イ理ト イヨト イヨト

Linear dimension

In particular, notions of 2^{ω} -dim *X*, I-dim *X*, and \mathbb{R} -dim *X* coincide. We will denote them I-dim *X*.

Theorem (Novotný, 1953; Novák, 1963)

Let L be a linearly ordered continuum. Then for any ordinal α , L^{α} is a linearly ordered continuum, and L-dim $L^{\alpha} = \alpha$.

Corollary

If α is an ordinal with the property, that $\omega \cdot \alpha = \alpha$, then I-dim $2^{\alpha} = \alpha$.

イロト イ理ト イヨト イヨ

Linear dimension

Example

Assume $\mathfrak{c} = 2^{\omega_1}$. Let $X = I^{\omega_1}$. Then $\mathbb{L}_{(X,0)}^{\omega_1}$ is a countably saturated linear order of cardinality \mathfrak{c} , without copy of ω_2 or ω_2^* , and I-dim equal to ω_1^2 . In particular $\mathbb{L}_{(X,0)}^{\omega_1}$ is not isomorphic to \mathbb{L}^{ω_1} .

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition (Fleischer, 1961)

If I-dim $L < \omega_1$, then L doesn't contain a copy of ω_1 or ω_1^* .

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Proposition (Fleischer, 1961)

If I-dim $L < \omega_1$, then L doesn't contain a copy of ω_1 or ω_1^* .

The converse doesn't hold, though the false proof was published in

I. Fleischer, *Embedding linearly ordered sets in real lexicographic products*, Fund. Math. 49 (1961)

イロト イ理ト イヨト イヨ

Proposition

Let (L, \leq) be countably saturated linear order. The following are equivalent:

- L is prime.
- $L = \bigcup_{\alpha < \omega_1} L_{\alpha}$, where 2-dim $L_{\alpha} < \omega_1$, for each $\alpha < \omega_1$.
- $L = \bigcup_{\alpha < \omega_1} L_{\alpha}$, where I-dim $L_{\alpha} < \omega_1$, for each $\alpha < \omega_1$.

ヘロト 人間 ト 人 臣 ト 人 臣 トー

Proposition

Let (L, \leq) be countably saturated linear order. The following are equivalent:

- L is prime.
- $L = \bigcup_{\alpha < \omega_1} L_{\alpha}$, where 2-dim $L_{\alpha} < \omega_1$, for each $\alpha < \omega_1$.
- $L = \bigcup_{\alpha < \omega_1} L_{\alpha}$, where I-dim $L_{\alpha} < \omega_1$, for each $\alpha < \omega_1$.

Theorem (K., 2019)

All prime countably saturated linear orders are isomorphic.

ヘロト 人間 とくほとくほとう

Proposition

Let (L, \leq) be countably saturated linear order. The following are equivalent:

- L is prime.
- $L = \bigcup_{\alpha < \omega_1} L_{\alpha}$, where 2-dim $L_{\alpha} < \omega_1$, for each $\alpha < \omega_1$.
- $L = \bigcup_{\alpha < \omega_1} L_{\alpha}$, where I-dim $L_{\alpha} < \omega_1$, for each $\alpha < \omega_1$.

Theorem (K., 2019)

All prime countably saturated linear orders are isomorphic.

Question

Can we add I-dim $L = \omega_1$ *to the list in previous theorem?*

イロト イポト イヨト イヨト

Thank You for attention!

References:

- M. Novotný, On similarity of ordered continua of types τ and τ²,
 Československá Akademie Věd. Časopis Pro Pěstování Matematiky, 78 (1953)
- V. Novák, On the lexicographic dimension of linearly ordered sets, Fund. Math. 56 (1964)
- I. Fleischer, *Embedding linearly ordered sets in real lexicographic products*, Fund. Math. 49 (1961)
- J.G. Rosenstein, *Linear Orderings*, Academic Press Inc., 1982