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General definitions

A linear order is compact, if it’s compact in the order topology.
This means, it is Dedekind complete, and has both endpoints.

A linear order is linearly ordered continuum, if it is compact and
connected in the order topology. This means, it is compact and
dense.

I = [−1, 1].
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Definition
We’ll say that a linear order (L,≤) is countably saturated, if for any
countable linear orders a, b, and increasing functions i : a→ b,
f : a→ L, there exists f̃ : b→ L, such that f̃ ◦ i = f .
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Definition
We’ll say that a linear order (L,≤) is countably saturated, if for any
countable linear orders a, b, and increasing functions i : a→ b,
f : a→ L, there exists f̃ : b→ L, such that f̃ ◦ i = f .

There exists an equivalent definition.

Lemma
Linear order is countably saturated if and only if

it is dense, without endpoints,

no countable increasing sequence has supremum,

no countable decreasing sequence has infimum,

there are no (ω, ω)-gaps: for any two sequences {xn}n<ω,
{yn}n<ω such that ∀n < ω xn < xn+1 < yn+1 < yn, there exists z
s.t. ∀n < ω xn < z < yn.
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Proposition
Any countably saturated linear order contains an isomorphic copy of
the real line.

Proof.
Let (L,≤) be a countably saturated linear order. It is dense, so there
exists an injection i : Q ↪→ L. For any real number r, we want to
define i(r).
Notice that sets i[{q ∈ Q : q > r}] > i[{q ∈ Q : q < r}] are
countable. Therefore, there exists l ∈ L such that

i[{q ∈ Q : q > r}] > l > i[{q ∈ Q : q < r}].

We define i(r) = l.
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Theorem (Hausdorff)

Assume (L,≤L) is countably saturated, and (X,≤X) doesn’t contain a
copy of ω1 or ω∗

1 . Then exists an embedding i : X ↪→ L.
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Examples

Definition
A countably saturated linear order L is prime, if it embedds into any
other countably saturated linear order.
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Examples

Definition
A countably saturated linear order L is prime, if it embedds into any
other countably saturated linear order.

Example (Sierpiński)

Let Q = {x ∈ {0, 1}ω1 | ∃α<ω1x(α) = 1, ∀β > α x(β) = 0}, with
lexicographic order. This order is prime countably saturated.
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Examples

Definition

Lω1 = {x ∈ Iω1 | |{α < ω1 : x(α) 6= 0}| ≤ ω},

with lexicographic order. If D is compact linear order, and d0 ∈ D is
neither least, nor greatest element of D, then we define

Lω1
(D,d0)

= {x ∈ Dω1 | |{α < ω1 : x(α) 6= d0}| ≤ ω}.
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Examples

Theorem

Lω1 and Lω1
(D,d0)

are countably saturated.

Theorem
Lω1 is prime countably saturated. Moreover, if D is separable,
compact, and d0 ∈ D is neither the least, nor the greatest element,
Lω1
(D,d0)

is prime.
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Classification

Theorem (folklore)
Under CH, all countably saturated linear orders of cardinality c are
isomorphic.
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Classification

Theorem (folklore)
Under CH, all countably saturated linear orders of cardinality c are
isomorphic.

In fact, the category of countable linear orders with embeddings, has
unique ω1-Fraïssé limit.
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Classification

Theorem (foklore)
Without CH, no.
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Classification

Proof.

Lω1 = {x ∈ Iω1 | |{α < ω1 : x(α) 6= 0}| ≤ ω},

and
{x ∈ Iω2 | |{α < ω2 : x(α) 6= 0}| ≤ ω},

are both countably saturated. But the second contains a copy of ω2,
while the first doesn’t.
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But what if we want same better examples?
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Example
In the Cohen model there exists two non-isomorphic countably
saturated linear orders of cardinality c, none of which contains copy
of ω2 or ω∗

2 .
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Outline of the proof:
Let M be a model of CH, M[G] be extension by Fn<ω(ω2).

First example will be Lω1 (in M[G]). We show, that it doesn’t
contain copy of any linear order of cardinality ω2, which was in
M.

For second example, we take 2ω1 , and inductively define an
increasing sequence of linear orders {Rα}α≤ω1 , such that
R0 = 2ω1 , and Rω1 is countably saturated.

(2ω1)M ⊂ 2ω1 ⊆ Rω1 ,

so these two cannot be isomorphic.
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Linear dimension

We’ll use notion of dimension for better classification of linear orders.

Definition (V. Novák, 1963)
Let L and X be linear orders. We define dimension of X with respect to
L as:

L-dimX = min{α ∈ ON| X ↪→ Lα}.
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Linear dimension

Let us write down some easy observations.

Proposition
For any linear orders L,L1,L2,X, the following holds.

If X1 ↪→ X2, then L-dimX1 ≤ L-dimX2.

If L1 ↪→ L2, then L1-dimX ≥ L2-dimX.

If L1 ↪→ L2 and L2 ↪→ L1, then for every X,
L1-dimX = L2-dimX.
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Linear dimension

In particular, notions of 2ω-dimX, I-dimX, and R-dimX coincide.
We will denote them I-dimX.

Theorem (Novotný, 1953; Novák, 1963)
Let L be a linearly ordered continuum. Then for any ordinal α, Lα is
a linearly ordered continuum, and L-dimLα = α.

Corollary
If α is an ordinal with the property, that ω ·α = α, then I-dim 2α = α.
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Linear dimension

Example

Assume c = 2ω1 . Let X = Iω1 . Then Lω1
(X,0) is a countably saturated

linear order of cardinality c, without copy of ω2 or ω∗
2 , and I-dim

equal to ω2
1 . In particular Lω1

(X,0) is not isomorphic to Lω1 .
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Proposition (Fleischer, 1961)

If I-dimL < ω1, then L doesn’t contain a copy of ω1 or ω∗
1 .
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Proposition (Fleischer, 1961)

If I-dimL < ω1, then L doesn’t contain a copy of ω1 or ω∗
1 .

The converse doesn’t hold, though the false proof was published in

I. Fleischer, Embedding linearly ordered sets in real lexicographic
products, Fund. Math. 49 (1961)
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Proposition

Let (L,≤) be countably saturated linear order. The following are
equivalent:

L is prime.

L =
⋃
α<ω1

Lα, where 2-dimLα < ω1, for each α < ω1.

L =
⋃
α<ω1

Lα, where I-dimLα < ω1, for each α < ω1.
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Proposition

Let (L,≤) be countably saturated linear order. The following are
equivalent:

L is prime.

L =
⋃
α<ω1

Lα, where 2-dimLα < ω1, for each α < ω1.

L =
⋃
α<ω1

Lα, where I-dimLα < ω1, for each α < ω1.

Theorem (K., 2019)
All prime countably saturated linear orders are isomorphic.
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Proposition

Let (L,≤) be countably saturated linear order. The following are
equivalent:

L is prime.

L =
⋃
α<ω1

Lα, where 2-dimLα < ω1, for each α < ω1.

L =
⋃
α<ω1

Lα, where I-dimLα < ω1, for each α < ω1.

Theorem (K., 2019)
All prime countably saturated linear orders are isomorphic.

Question
Can we add I-dimL = ω1 to the list in previous theorem?
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Thank You for attention!
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